Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape

نویسندگان

  • Elena R. Álvarez-Buylla
  • Álvaro Chaos
  • Maximino Aldana
  • Mariana Benítez
  • Yuriria Cortes-Poza
  • Carlos Espinosa-Soto
  • Diego A. Hartasánchez
  • R. Beau Lotto
  • David Malkin
  • Gerardo J. Escalera Santos
  • Pablo Padilla-Longoria
چکیده

In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5-10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks.

We propose a systematic methodology to construct a probabilistic epigenetic landscape of cell-fate attainment associated with N-node Boolean genetic regulatory networks. The general derivation proposed here is exemplified with an Arabidopsis thaliana network underlying floral organ determination grounded on qualitative experimental data.

متن کامل

Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model succe...

متن کامل

Realization of Waddington’s Metaphor: Potential Landscape, Quasi-potential, A-type Integral and Beyond

Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to realize this metaphor in a rationalized way. We adopt comprehensive perspectives to systematically investigate three different but closely related realizations in recent literature: namely the potential landscape theory from the steady...

متن کامل

Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids Ming-Hsien Hsieh, Zhao-Jun Pan, Pei-Han Lai, Hsiang-Chia Lu, Hsin-Hung Yeh, Chia-Chi Hsu, Wan-Lin Wu, Mei-Chu Chung, Shyh-Shyan Wang, Wen-Huei Chen and Hong-Hwa Chen*

Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virusinduced gene silencing (VIGS), this study identified...

متن کامل

Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis

MOTIVATION A large number of molecular mechanisms at the basis of gene regulation have been described during the last few decades. It is now becoming possible to address questions dealing with both the structure and the dynamics of genetic regulatory networks, at least in the case of some of the best-characterized organisms. Most recent attempts to address these questions deal with microbial or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008